Thermal Energy, Infrared Energy and Temperature

Thermal Energy

Longer arrows mean higher average speed.

Copyright @ Addison Wesley

Thermal Energy and Temperature – Absolute Zero

Electromagnetic Spectrum

Properties of Infrared Energy

- All objects emit infrared energy
- Infrared Energy Exhibits the Same Properties as Visible Light
 - Travels in straight lines at the speed of light
 - Bounces off reflective surfaces
 - Transmits through IR windows

The Relationship of Energy to Temperature

- Emitted infrared energy is proportional to the object's temperature
 - As objects get hotter, they emit more energy
 - As objects get cooler, they emit less energy
- The amount of energy emitted is a function of temperature & emissivity
- Opaque objects emit energy at all wavelengths
 - Energy is visible to the eye at temperatures above about 1200°F (650°C)

Blackbody Emissions

Infrared Energy vs Wavelength

Plank's Equation

Stefan-Boltzman Law

Infrared Energy vs. Temperature

Emissivity, Reflectivity and Transmission

Definition of a Blackbody

- 1. A blackbody absorbs all incident radiation
- 2. For a given temperature and wavelength, no surface can emit more energy than a blackbody
- 3. All blackbody radiation is independent of direction

Scientific Definition of Emissivity

Emissivity (ε) is:

The ratio of infrared energy emitted by an object compared to the amount of infrared energy emitted by a perfect emitter (blackbody) at the same temperature.

ε = (Measured IR Energy)/(Blackbody Value)

Definition of Emissivity

Emissivity is:

The ability of an object to emit infrared energy is equal to the ability of an object to absorb infrared energy.

Emissivity = Absorption.

Emissivity = 100% - Reflectivity - Transmission

Energy Transmission, Absorption, & Reflection

 $\mathbf{Emissivity} = \mathbf{E}_{\mathbf{A}} / \mathbf{E}$

Incident Energy is either absorbed, reflected, or transmitted

$$\mathbf{E} = \mathbf{E}_{\mathbf{R}} + \mathbf{E}_{\mathbf{T}} + \mathbf{E}_{\mathbf{A}}$$

Simple Definition of Emissivity

Emissivity is:

For an opaque material, emissivity is the opposite of reflectivity.

E = 100% - Reflectivity.

Surface Emissivity Characteristics

• Emissivity is:

- A property of the target material & surface
- Between 0.000 and 1.000 (1 = perfect emitter)
 Independent of color
- For some materials, emissivity is relatively high & constant.
- For some materials emissivity is less than 1 and variable due to changes in material, surface oxidation, surface roughness, microstructure or coating.

Surface Emissivity Characteristics

Emissivity Varies With Changes in ...

- Material or Alloy,
- Surface Oxidation,
- Surface Roughness,
- Microstructure, or
- Surface Contamination.
- Direction (angle)
- Wavelength

Emissivity of Select Materials*

Metallics and their Oxides	
 Polished Aluminum 	.04
 Anodized Aluminum 	.82
 Polished Stainless Steel 	.23
 Lightly Oxidized SS 	.33
 Highly Oxidized SS 	.67
Non Metallics	
- Concrete	.8893
 Paint, white zinc oxide 	.92
 Alumina Brick 	.40
 Kaolin Brick 	.70
– Water	.92

* Incropera, F.P. and DeWitt, D.P. <u>Fundamentals of Heat and Mass</u> <u>Transfer</u>, 3rd Edition, pp. A27-A29

Wavelength Issues

Atmospheric Absorption

Emissivity of Cold Rolled Steel

Error due to Emissivity Variation – Brightness Sensor

Definition of e-slope

For a dual-wavelength pyrometer operating at wavelengths λ_1 and λ_2

Error due to Emissivity Variation – Ratio Sensor

 $r = \frac{1}{\varepsilon_2}$

Grey vs. Non-Grey Surface

- <u>Grey Surface</u> Emissivity is independent of wavelength

 Most ceramics and other non-metallics
- <u>Non-Grey Surface</u> emissivity depends on wavelength

 Most metallics, including steel

Transmission Characteristics (Selective Emitters)

Williamson

Temperature Application Issues

 $\Delta T \text{ (System)} = \Delta T \text{ (Emissivity)} + \Delta T \text{ (Transmission)} + \Delta T \text{ (Background)} + \Delta T \text{ (Instrument)} + \Delta T \text{ (Alignment)}$

Brightness Sensors

- Tend to measure an average temperature value
- Are affected by changes in emissivity, optical obstruction & stray background energy
 Wavelength Matters!

Ratio Sensors

- Compensate for emissivity variation, and tend to measure the hottest temperature viewed.
- Are affected by changes in e-slope, wavelength-selective optical obstruction and excessively hot background reflections.

Wavelength Matters!

Multi-Variant Sensors

- Are used whenever traditional sensors are not appropriate.
- Use multiple wavelengths to characterize the emissive nature of the measurement.
- Multi-Variant algorithms are developed for each application type (usually the same from one plant to the next) to address specific emissivity or interference issues.

Multi-Wavelength Infrared Thermometers

- Designed for difficult materials and challenging applications.
- Used where single- & dual-wavelength sensors can't meet requirements
- Common measurements include Aluminum, Brass, Copper, Zinc, Galvanneal, Stainless Steel, Electrical Steel, High Strength Steel, Cold Rolled Steel, Magnesium, Chrome, etc....

Advanced Infrared Technologies

- Brightness Technology
 - Auto Null Technology for Low-Temperature, Short-Wavelength, Single-Wavelength Measurements.
 - Low or Varying Emissivity at Low Temperatures (below 400-600 F / 200-300 C)
 - Low Temperature Measurement through Windows.
 - Narrow band wavelengths to avoid common interference sources or to measure selective emitters.

Dual-Wavelength Technology

- Compensates for varying emissivity, optical obstructions, temperature gradients, and misalignment.
- Unique wavelength selection to view through water and steam and for low-temperature measurement.
- Advanced Signal Conditioning with Unique ESP Technology
- Multi-Wavelength Technology
 - Used for Non-Greybody Measurements.
 - Advanced Signal Conditioning with Unique ESP Technology

Other Infrared Technologies

- Line Scanners
- Thermal Imaging Cameras
- Flame Detectors
- Hot Metal Detectors
- Two-Component Background Compensation System
- Laser Reflection Multi-Variant Type

